Using Feedforward Neural Networks to Monitor Alertness from Changes in EEG Correlation and Coherence
نویسندگان
چکیده
We report here that changes in the normalized electroencephalographic (EEG) cross-spectrum can be used in conjunction with feedforward neural networks to monitor changes in alertness of operators continuously and in near-real time. Previously, we have shown that EEG spectral amplitudes covary with changes in alertness as indexed by changes in behavioral error rate on an auditory detection task [6,4]. Here, we report for the first time that increases in the fre~uencv of detection errors in this task are also accompanied by patterns of increased and decreased spectral coherence in several frequency bands and EEG channel pairs. Relationships between EEG coherence and performance vary between subjects, but within subjects, their topographic and spectral profiles appear stable from session to session. Changes in alertness also covary with changes in correlations among EEG waveforms recorded at different scalp sites, and neural networks can also estimate alertness from correlation changes in spontaneous and unobtrusivelyrecorded EEG signals.
منابع مشابه
Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملبررسی کارایی روشهای مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
متن کاملAL . : ESTIMATING ALERTNESS FORM THE EEG POWER SPECTRUM 1 Estimating Alertness from the EEG
In tasks requiring sustained attention, human alertness varies on a minute time scale. This can have serious consequences in occupations ranging from air traac control to monitoring of nuclear power plants. Changes in the electroencephalographic (EEG) power spectrum accompany these uctuations in the level of alertness, as assessed by measuring simultaneous changes in EEG and performance on an a...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کامل